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We perform an analytic semi-classical quantization of the straight QCD string with one end fixed and
a massless quark on the other, in the limits of orbital and radial dominant motion. We compare our
results to the exact numerical semi-classical quantization. We observe that the numerical semi-classical
quantization agrees well with our exact numerical canonical quantization.

I. INTRODUCTION

The purpose of this paper is to explore some remark-
able results of the QCD string/flux tube model [1–3]. In
its relativistic and single quantized form [3] a particu-
larly simple pattern emerges when one or both quarks
are light. For the purposes of this paper we take the light
quarks to have zero mass. In this case the energy

�
of

the light degrees of freedom (LDF) and the angular and
radial quantum numbers ( � and � respectively) are accu-
rately related by

���
���	��
��� ��� � ���

�
� (1.1)

for one or (two) light quark(s). For the case of one light
quark the meson energy is the sum of

�
and the heavy

quark mass.
The above pattern of angular and radial states results in

degenerate “towers” of mesons of the same parity. This
is the same pattern as the 3D harmonic oscillator.

The QCD string model is kinematically intricate and it
would seem unlikely that it would lead to such a simple
result as Eq. (1.1). We demonstrate in this paper that al-
though Eq. (1.1) is not exact, it is very accurate for most
accessible quantum states. The quantized relativistic flux
tube model is of great interest because of the probability
that QCD reduces to string-like behavior at large source
separations [4].

The simplest version of a quark string model assumes
that the string is always straight. In the limiting cases
of circular motion or pure radial motion this assumption

is physically reasonable. In addition, for massive quarks
at the ends the relativistic corrections have been shown
[5] to agree with the Wilson loop description of QCD
confinement [6]. Numerical quantization of the straight
string and quark system has been done canonically [3]
with the Nambu-Goto string, as well as in the WKB ap-
proximation with an auxiliary field method [7]. Both ap-
proaches give results similar to Eq. (1.1).

More generally, one may allow the string to curve adi-
abatically by incorporating the string equations of mo-
tion from the Nambu-Goto action [8]. This more general
string calculation demonstrates that the string curvature
remains small for motion in ordinary hadrons. The string
curvature only slightly changes the energies of the bound
states, justifying the use of the simpler straight string ap-
proximation.

The approach emphasized here is to quantize the
straight string system semi-classically. We will show
that this quantization agrees well with our previous ex-
act quantization method. We will also show that a single
integral function then predicts the whole spectroscopy
when at least one quark is massless. We will approxi-
mate analytically this integral in sectors when �����
and when ����� . The later case where radial motion
dominates is valid over most of the allowed bound states.
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II. DYNAMICS AND QUANTIZATION

A. Dynamics

As we mentioned earlier, the straight QCD string is an
excellent approximation to the dynamical (curved) string
in normal hadrons. We will therefore restrict ourselves
to the relatively simple straight string. We will explicitly
consider the case of one fixed end and a quark of mass �
at the other. The string with two light quarks introduces
only minor modifications, which we discuss at the end
of section II. As is well-known [3], the two constants of
motion are the orbital angular momentum � and the en-
ergy

�
of the light degrees of freedom, which are given

in terms of the quark’s transverse velocity ��� and radial
momentum ��� as

���
	 ���� � ��� � � � ��� � � � ��� (2.1)� �
	 ���� � � ��� � � � ��� (2.2)

where 	 � ��� � �� ��� � , �� � ����� � �� ��� �"! � , � is the
string length, and

�
is the string tension. The functions�

and � that appear in the expressions for the angular
momentum and energy are� � �#� � � �

� � � $ � � �#� �%�'& �(� � ��%) �
(2.3)

� � �#� � �+*-,/. �0� � � � �� � 1 (2.4)

For our present purposes we will introduce a set of di-
mensionless variables. As our units we take the circular
orbit radius (in the limit of a massless quark)

�32 � �4 �
� � (2.5)

and corresponding string energy

� 2 �65 � 
� 1 (2.6)

Our dimensionless variables 7 , 8 , and 9 are defined
by

�
� 2;: � � �<7 � � (2.7)�� 2;: � � �<7 � �=8>7 �

(2.8)

and 9 : 	?�� 2 1 (2.9)

The leading (classical) Regge trajectory corresponds to7@�BA and radial excitation occurs for positive 7 .
In terms of these dimensionless variables the con-

served quantities (2.1) and (2.2) become� � � 9 �� � �'C � � �<7 � �=8>7ED
��F
 � � � � � C � � �G7 � ��8>7HD � � (2.10)� � �G7 � �
9 �>� � �
 � � � � � C � � �G7 � ��8I7ED 1 (2.11)

After some work, we can eliminate the product 9 � �
to obtain

� � �JC � � �<7 � ��8I7ED � � �<7 �� F
 � � �K� � � � �%�=� � � � � � C � � �G7 � ��8I7ED �� �
(2.12)

and rewrite Eq. (2.11) to find an expression for 9
9
� & �(� � ��ML � � �G7 �� �
 � � � � ��N � � �G7 � ��8I7PORQ 1 (2.13)

At the radial turning points � � �
A . The radial velocity
also vanishes, except in the massless quark limit.

The reason for the definition of the radial coordinate8 in Eq. (2.8) will be evident in this limit. If we take
the limit �#�S� �

this will correspond to T� �UA in the
massless quark case. Using

� ��� � � 
WV F and � �-� � � 
WV �
in Eq. (2.12) we see that the solution is 8 � � �

for any7 . The points 8X�@Y � therefore correspond to possible
turning points.

By Eq. (2.13) we see that at � � � �
, 9Z�[A . This

would seem to be the expected result in the massless
quark case. However, as we see in Fig. 1, the second
factor in Eq. (2.13) has a zero at 8]\ �

and is the true
turning point. In Fig. 1 we show representative numeri-
cal solutions with 7S�^A 1 _ and 7S� � 1 A . First we solve
Eq. (2.12) for � � for

�`� \a8?\ � � and substitute into
Eq. (2.13) to compute 9 � 8 � . The turning points of the
general motion are 8 � � �`�

and 8Ib]\ �
. We will show

later that in the massless quark case

� �]��c 8Ib c6�d�

(2.14)

where the lower limit is achieved for large 7 and 8be� �
when 7f�
A .

The outer turning point in the massless case is a
“bounce” where T� discontinuously changes sign.
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B. Quantization

The semi-classical quantization condition for a spher-
ically symmetric system is [9]� �������� � � � � � � ��� ��V	�	� � 
 $ ��� �

� ) �
(2.15)

where ���JA �3� � �>� 131 1 and it is understood that the Langer
correction [9] replaces the classical angular momentum
� by � � ��V	�

, where � is now the angular momentum
quantum number. In terms of our dimensionless param-
eters 8 and 9 , the above quantization condition becomes

F
 ��� �� � � 8
	 9 � � � �� ��� �� ��� 
 � � � ��� � �
� � � �� � 7 1 (2.16)

For our purposes, the massless quark will be of central
interest. In this case, there is no � dependence on the left
hand side of Eq. (2.16) and, by defining� � 7 � � F
 � � �� � � 8 9 � 8 � � (2.17)

we obtain 7 � � 7 � � � ��� �
��� �� 1 (2.18)

The remarkable aspect of the massless quantization
condition is that the whole spectrum is revealed once� � 7 � is computed. In Fig. 2, we show the numerical
result of this integration. For a given 7 and 8 we use
Eq. (2.12) to find � � . The result is used in Eq. (2.13) to
find 9 � 8 � . This is turn is used in Eq. (2.17) to compute� � 7 � . The upper integration limit is determined by the
zero in 9 � 8 � , as shown in Fig. 1.

It is evident from Fig. 2 that
� � 7 � is essentially linear

in 7 with unit slope. The LDF energy dependence is
related to 7 by Eq. (2.7)

7@� L ���
� � � �� ��� 
 �<� Q �"! � � (2.19)

where we have again used the Langer correction to the
angular momentum. Using the quantization condition,
Eq. (2.18), we can map out the entire Regge structure as
shown by the curves in Fig. 3. The trajectories are la-
beled by different radial excitations � �BA �3� � �>� 131 1 . The
�B�SA trajectory is normally called the “leading trajec-
tory” and the ��]A trajectories are known as the “daugh-
ter trajectories.” The solid points are the exact numerical
solutions by the exact canonical quantization method [3].

The nearly perfect agreement between the semi-classical
and canonical quantization should be noted. It is only
along the leading trajectory that small differences arise.
If there are differences, this is where they should appear
since the semi-classical quantization becomes exact for
large radial excitation where the wave function has many
nodes.

Figure 2 shows that for 7�� �
,
� � 7 � is essentially

equal to 7 . In general we expect an expansion in 7 �0� to
have odd powers of the form� � 7 ����� ���� 7 ���7 � 131 1�1 (2.20)

A detailed examination of our exact numerical integra-
tion of Eq. (2.17) shows that

� � � A 1 A A�� 1 (2.21)

The small magnitude of the coefficient � reflects the ex-
traordinary accuracy of

� � 7 � �
7 for large Delta.
The string with two light quarks can be considered as

two single light quark strings with their fixed ends co-
inciding at the center of mass point. The resulting light
meson equations following from Eqs. (2.1) and (2.2) are

���M�B	 � �>� � �K� ��� �
� � � �� � � � � �K� (2.22)

� � � � 	?� � � � � � � � � �#� ��� (2.23)

where � � � � � , � � � � � , and
� � � � � .

We recover Eq. (2.12) upon rescaling

� 2 �M� � � 
� ��� � (2.24)

� 2 �M� � 4 � ���� 
 1 (2.25)

Using Eq. (2.13), we may now identify	?� : �
� � � 
� � � 9 � 8 � � (2.26)

and the quantization condition with
� � 7 � � 7 yields

����� 
� � ��� � � ��� �� � (2.27)

in agreement with Eq. (1.1).

III. RADIAL DOMINANCE ANALYTIC SOLUTION

A. Leading Order

As verified by examining Fig. 4, large � corresponds
to large 7 since at fixed angular momentum, both make
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the LDF energy
�

increase without bound. By examin-
ing Eq. (2.12), we see that for large 7 either 8;� �`�

or� � is small. To verify this we note that�#� � � �#� � �=� � �#� � � � �#� V � ��� � ���� � 1 (3.1)

Hence, except at 8P� �`�
, � ��� �

in the 7�� �
limit.

In the vanishing � � limit the expression (2.13) for9 � 8 � then becomes

9 � 8 ����� �� � 7 L �(� �
�� � �=8	� Q 1 (3.2)

We note that the zero in 9 that follows from Eq. (3.2) is8 b � 
 � �<� 1 (3.3)

In Fig. 5 we show the exact numerical result (solid
curve) as well as the large 7 approximation (LO) for7@� � .

In this regime we may analytically evaluate the quan-
tization integral

� � 7 � in Eq. (2.17) to be� � 7 � �
7 1 (3.4)

Substitution of this into Eq. (2.18) with the use of
Eq. (2.19) quickly yields

���

� ����� � ��� �� 1 (3.5)

This is a good representation of the massless quark spec-
troscopy, as we will discuss in the conclusion, Sec. V.
This is a reflection of the agreement of the asymptotic
(large 7 ) values of

� � 7 � down to small 7 .
Finally, we note that the spectrum in Eq. (3.5) is

very similar to the three dimensional harmonic oscilla-
tor spectrum as we have pointed out previously in the
context of the Lorentz scalar confinement of massless
quarks.

B. Corrections to Leading Order

Although in leading order in 7 the result
� � 7 � � 7

is very accurate, the distribution 9 � 8 � computed to the
same approximation is not as satisfactory, which can be
seen in Fig. 5. In this section we attempt to obtain a
somewhat better approximation to these two quantities.

Using Eq. (2.12) and the limiting behavior of Eq. (3.1),
we find the dependence of � � on 8 and 7

� � � L � N � � �G7 � ��8I7 O�
$ � � �<7 � � F� 
 N � � �<7 � �=8>7PO ) Q �0� 1 (3.6)

The value for upper turning point coordinate 8 b can
be found from the vanishing of Eq. (2.13) for small �I� ,
which yields8 b � 5 � �<7 �7 N 
 � �]� O 1 (3.7)

With this value of 8 b , Eq. (3.6) determines the value of�#� at the upper turning point� b� � $ �

 ) �� �G7 � 1 (3.8)

To second order in � � , 9 � 8 � becomes9 � � � �<7 � $ �(� �
 ) � � 8>7
� � ���� � � �<7 � � F� 
 N � � �<7 � �=8>7 O�� 1 (3.9)

Upon substitution of the result of Eq. (3.6), 9 � 8 � be-
comes9 � � � �<7 � $ �(� �
 ) � � 8>7
� � 5 � �<7 � � 8I7�� �� � 5 � �G7 � ������ � 5 � �G7 � ��8>7 � � (3.10)

: 9 � ��9 � �
with 9 � being the piece of Eq. (3.9) that is finite in the
limit of vanishing � � . The next-to-leading-order result is
shown in Fig. 5. We see that it comes much closer to the
exact 9 � 8 � but deviates slightly near 8M� �`�

where the
small � � expansion fails.

It is not difficult to evaluate the integral in Eq. (2.17)
by changing the integration variable from 8 to� : � � �G7 � ��8>7 1 (3.11)

Splitting
� � 7 � � � � � 7 � � � � � 7 � according to Eq. (3.10),

we find� � � 7 � � �7 $ �

 ) � C N 
 � �]� O � � �G7 � �<7 D � � (3.12)� � � 7 � � �

� 
 7 ��� �<7 � � L �
 �]�(� 7 � � 7 � � �<7 �� F� 
�� . $ � 
 7� N 7�� � � �<7 � O�� � 
;� F� ) Q 1
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Asymptotically
� � 7 � � � � � 7 � � � � � 7 � is linear� � 7 � � 7�� $ �(� �
 ) 7 � � ��� � 7 � � � . � 7 � � 1 (3.13)

Although the coefficient of
� V 7 is small, yet higher or-

der corrections are expected to reduce it to the near zero
value found in (2.21).

IV. ANGULAR DOMINANCE ANALYTIC SOLUTION

For large
���

and small radial excitation, 7 is small
as can be seen from Eq. (2.18). Since for a massless
quark the leading classical Regge trajectory corresponds
to circular motion and in that case 7 � A and we are
in the ultra-relativistic regime � ��� �

. In this section
we examine the behavior of Eqs. (2.12) and (2.13) as � �
approaches unity.

The appropriate expansion parameter in this case is

� � & �(� � �� � ��� �
(4.1)

which would be the radial velocity with a massless quark
since a massless quark must have � � �UT� � �=� �� � �

.
Our first task is to expand Eq. (2.12) for small � and 7 ,

which is an expansion about circular orbits. The result is�
� 
 � � � 8I7 � � � �-�R� 8 � � 7 � �JA 1 (4.2)

The cubic term is critical. Without it, there would be
no real solutions for 8 � \ �

. Going to quartic order in� makes only minor changes. To demonstrate the accu-
racy of this approximation, we show in Fig. 6 the solution� � 8 � of Eq. (4.2) and the exact result obtained by solving
the original (exact) Eq. (2.12) for the value 7@�
A 1 � .For small 7 the � � 8 � solution becomes more symmet-
ric about 8 � A . The approximate solution to the cubic
equation (4.2) for small 7 is

� � 8 � � $ � 
� ) �"! � � �(� 8 � � �-! � 7 � ! � � 
 � 8>7�� 1 131�1
(4.3)

By substitution of Eq. (4.3), we see that Eq. (4.2) is sat-
isfied up to the two leading powers of 7 . As 7 be-
comes small the asymmetric term becomes of less rel-
ative importance and we may keep only the leading term
in Eq. (4.3),

� � 8 � ��� �� � $ � 
� ) �-! � � �(� 8 � � �"! � 7 � ! � 1 (4.4)

For 7 � �
and � � �

, the expression (2.13) for 9
reduces to

9 � �
 � � � �
�
$ �

 ) � ! � � �(� 8 � � � ! � 7 � ! � 1 (4.5)

With this approximation for 9 , the semi-classical quan-
tization integral (2.17) becomes� � F
 � b �� � � 8 9 � 8 � � �

�>� $ �

 ) � !��	� � � � �� ��
� � 7 � ! � 1 (4.6)

Numerically, we find� � 7 � � � 1 �	� ���7 � ! � 1 (4.7)

In Fig. 7 we show the small 7 values of
� � 7 � . At

small 7 we observe a distinct deviation from the linear-
ity observed at larger 7 (see Fig. 2). The dotted curve
shown in Fig. 7 is the small 7 leading term approxima-
tion of Eq. (4.7) and the dashed curve is the large 7 ap-
proximation to

� � 7 � . Although the small 7 analytic ap-
proximation clearly is converging to the correct numer-
ical result for 7 � A , deviations from the exact

� � 7 �
are evident around 7 �fA 1 � . For 7 �^A 1 F , the large 7
approximation to

� � 7 � is better.

V. CONCLUSION

We have argued in Section I that the straight string
model of confinement is accurate for ordinary hadron
dynamics and that it is therefore a serious candidate
for long-range QCD. Semi-classical quantization of the
straight string agrees well with a fully quantized calcula-
tion [3], as shown in Fig. 3. The semi-classical method
allows considerable analytic insight into string confine-
ment in hadrons. In particular, when one or two of the
quarks are massless, the entire spectroscopy is generated
by a single integral function

� � 7 � given in Eq. (2.17).
For almost all accessible states

� � 7 � � 7 which, by
(2.18), immediately gives the simple pattern of Eq. (1.1),
as illustrated in Fig. 8. Since even low-lying meson dy-
namics is dominated by the confining region, the obser-
vation of degenerate towers of mesons of the same parity
becomes a key prediction of QCD.

The deviations from the simple pattern (1.1) are small
and come when 7[\ �

. For observed meson states this
corresponds to large angular momentum and small ra-
dial excitation. That is, deviations from (1.1) occur for
mesons lying near the “leading” Regge trajectory. We
showed in Sec. IV that

� � 7 � is proportional to 7 � ! � for7 � �
and the analytic approximation agrees well with

the exact numerical
� � 7 � , as can be seen in Fig. 7.
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To make the above statement more explicit we show
in Fig. 8 a recreation of Fig. 3 but now adding a dashed
line representing the analytic result (3.5) which becomes
exact for large � and small � . For large � and small � the
Regge trajectories seem to have a slightly smaller slope.
In Fig. 9 we show the 7 values in this orbital dominant
regime and we see that 7 is less than one. As seen in
Fig. 7,

� � 7 � \U7 and this reduction accounts for the
difference between the dashed and solid (exact) curves
in Fig. 8.

A final observation is that
� � 7 ��� 7 follows from the

radially dominant regime and not from the nearly circular
approximation. This limit automatically gives straight,
evenly spaced Regge trajectories.
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tion Eq. (3.2) (highest curve) and the solution to next to leading
order, Eq. (3.10) (intermediate curve).
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